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Abstract 

 

We address the question of: ‘how many deaths in England and Wales are due to COVID-19?’ 

There are two approaches to measuring COVID deaths – ‘COVID associated deaths’ and ‘excess 

deaths’. An excess deaths type framework is preferable, as there is substantial measurement error 

in COVID associated deaths, due to issues relating to the identification of deaths that are directly 

attributable to COVID-19. A limitation of the current excess deaths metric (a comparison of deaths 

to a 5 year average for the same week), is that it attributes the entirety of the variation in mortality 

to COVID-19. This likely means that the metric is overstated because there are a range of other 

drivers of mortality. We address this by estimating novel empirical Poisson models for all-cause 

deaths (in totality; by age category; for males; and females) that account for other drivers including 

the lockdown Government policy response. The models are novel because they include COVID 

identifier variables (which are a variation on a dummy variable). We use these identifiers to 

estimate weekly deviations in COVID deaths (about the mean weekly estimate pertaining to the 

COVID dummy variable in our baseline model). Results from two sets of identifiers indicate that, 

over the periods when our weekly estimates of total COVID deaths and the current excess deaths 

measure differ (week ending 17th or 24th April 2020 - week ending 8th May 2020), the former is 

considerably below the latter – on average per week 4670 deaths (54%) lower, or 4727 deaths 

(63%) lower, respectively.   
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1. Introduction 

There is no doubt that there has been a substantial number of deaths in the world due to COVID-

19. However, coupled with this is a great deal of uncertainty about the precise number of deaths 

that can be attributed to COVID. This is a problem across countries and relates to the limitations 
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of current measures of COVID deaths. To fully understand the effect of the pandemic, an approach 

that accurately quantifies deaths in countries due to COVID is needed. In this paper we set out 

such an approach for a single country that, in due course, can be applied more widely by addressing 

the question of: how many deaths in England and Wales are due to COVID-19? 

 

At present there are two approaches to measuring COVID deaths in England and Wales. The first 

is referred to as ‘COVID associated deaths’, and the second is referred to as ‘excess deaths’. The 

method for recording COVID associated deaths has varied over time. Up until April 29th 2020, it 

reflected the number of people who had died in National Health Service (NHS)-commissioned 

services who had also tested positive for COVID-19. After April 29th, NHS Trusts recorded deaths 

using the ‘COVID-19 Patient Notification System’. Under this system, deaths can be recorded as 

being due to COVID even in the absence of a positive test (i.e., where a test has not occurred, or 

sometimes even where a prior test was negative). In addition, local health teams notify Public 

Health England (PHE) of suspected COVID deaths (primarily outside of a hospital setting). A 

third channel for recording COVID associated deaths is also used. Namely, positive COVID test 

records submitted by laboratories and identified via the Second Generation Surveillance System 

(SGSS) are cross checked against the NHS central register of patients. If this shows a patient with 

a positive test has subsequently died, the death is classified as ‘COVID associated’.1 Alternatively, 

the ‘excess deaths’ approach to measuring COVID mortality compares the total number of deaths 

in any given week (all-cause mortality) with the equivalent figure in the same week averaged over 

the prior 5 years. The data for this measure is entirely sourced from the Office of National Statistics 

(ONS) and is based on total death registrations.2 

 

To differing degrees, both measures of COVID deaths in England and Wales are inaccurate. At 

this juncture we only summarise the reasons for these inaccuracies, because in the next section we 

revisit these limitations in detail. In short, the COVID associated death method is particularly 

problematic, because there is no reliable record of causality between COVID infection and the 

subsequent death. This limitation is especially important if one were seeking to compare COVID 

deaths across countries. That is to say, not only will no one method of recording be ‘perfect’, but 

each individual country may have used different rules for determining ‘when’ to record COVID 

on a death certificate. 

 

In light of the above measurement problem with COVID associated deaths, a consensus has 

formed around excess deaths as being a preferred measurement approach. To illustrate, Professor 

Chris Whitty, the Chief Medical Officer for the UK, has advocated this, explaining as follows: 

“the metric we should be using… is all-cause mortality adjusted for age. That is the key metric. 

 
1 This information was published by HM Government (2020).  
2 As described further by the ONS (2020). 
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We’ve discussed it today amongst a lot of the scientists. Everybody agrees this is the key metric 

and the reason for that is every country measures its COVID cases in a slightly different way.”3 

Similarly EuroMOMO (European Mortality Monitoring) (2020) has elected to monitor COVID 

using the excess deaths (all mortalities) approach, explaining that: “there is a risk of countries 

sharing incompatible information if different methodologies are used.” The Health Foundation 

(2020) has stated that: “excess deaths is a better measure than COVID-19 deaths of the pandemic’s 

total mortality [because it] does not depend on how COVID-19 deaths are recorded.”  

 

We are also in agreement that because of the above measurement problem with COVID associated 

deaths, excess deaths is a superior approach to understanding the true number of deaths due to 

COVID. However, there are two limitations with the excess deaths method, or at least, the current 

‘simple’ application of it in the context of the COVID-19 pandemic (whereby contemporaneous 

weekly deaths are typically compared to the 5 year average for the same week). 

 

The first limitation of the excess deaths method arises because COVID-19 deaths are highly 

concentrated in the elderly. This may mean that a proportion of the deaths reported to date would 

have occurred at some future point in the year. Thus, rather than these deaths being truly 

‘excessive’ due to COVID, they might instead have been modestly ‘brought forward’ (the 

implication being that, for example, deaths due to influenza in the elderly may be lower in winter 

2020 than they otherwise would have been). This limitation in the excess deaths method cannot be 

fully overcome until a full years’ worth of data is available. Until that point, caution must therefore 

be attached to any excess deaths measure. What one might say is that, because it would seem 

unlikely that at least some deaths have not been brought forward from later in 2020 (rather than 

being incremental), this most likely means there will be some overstatement of excess deaths. One 

cannot, however, say by ‘how much’.  

 

The second limitation of the excess deaths method is that there are many drivers of all-cause 

mortalities. Therefore, an approach that attributes all of the difference between current weekly 

death numbers and the 5 year average to COVID omits important information (and, crucially, a 

distinction between COVID 19 itself and any Government policy response; the latter of which may 

affect mortality both positively and negatively). This, too, will likely lead to some overstatement 

of excess deaths. Given the excess deaths approach is superior and sufficient time has not elapsed 

to enable us to fully overcome its first limitation, the primary focus of this paper is on overcoming 

the second limitation of the approach. We do so by applying an excess deaths framework more 

robustly, which involves controlling for factors other than COVID that might be causing variations 

in weekly deaths in England and Wales. Our hope is that by robustly identifying factors that impact 

 
3 From Boris Johnson’s UK Coronavirus Briefing Transcript, April 30th 2020. 
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the death rate in England and Wales, we can help further thinking as to the appropriate methods 

for estimating and comparing excess COVID deaths across countries in due course; and also 

further the understanding of the impact of countries’ respective policy responses. 

 

To model mortality, a Poisson model is frequently estimated (e.g., Michener and Tighe, 1992, 

Coelho and Nunes, 2011, Sekhri and Storeygard, 2014, and Regidor et al., 2016, 

to name but a few studies). Such an approach is well-suited to this task, as it is a count data method 

and assuming that mortality is Poisson distributed corresponds to the mutually exclusive outcomes 

of death / survival. For a survey of the large mortality modelling literature that covers the use of 

Poisson models see Booth and Tickle (2008). 

 

As we undertake a time-series analysis of the effect of COVID on mortality, we focus on a small 

subset of the Poisson mortality modelling literature that uses time-series data to analyse the effect 

of some form of discrete change on mortality. One such example of the application of a Poisson 

model examines the effect of rail privatisation in Great Britain from 1994 on rail accidents and 

fatalities (Evans, 2007a; 2007b). The approach in these two studies was to construct the 

counterfactual, i.e., predictions of rail accidents and fatalities that would have been expected from 

1994 through to the end of the study period (2003), if Britain’s railways had remained nationalised. 

This involved fitting a Poisson model for the number of fatal accidents, and the number of 

fatalities, for a time period that directly preceded the privatisation of Britain’s railways. The trends 

from these models were then extrapolated through to 2003 to obtain predictions of the number of 

fatal accidents and the number of fatalities, if Britain’s railways had remained nationalised. With 

this approach the predicted number of fatal accidents and number of fatalities can be compared to 

the actual numbers, and the standard errors of the differences can be calculated. There are two 

areas of this approach, though, that our empirical methodology for COVID enhances. 

 

First, one would typically only forecast when observations for the dependent variable are not 

available, otherwise information is being discarded. We therefore include the COVID period in 

our sample for all our model specifications. In our baseline models, we use dummy variables to 

distinguish the portions of our sample that represent the COVID period and the period when the 

UK Government’s lockdown policy was active. As we use a fixed coefficient estimator 

throughout, the baseline models will, of course, only yield estimates of average weekly mortality 

due to COVID and the lockdown. When an independent variable is continuous and when, as is the 

case here, the variables are not logged so that its fitted coefficient measures the effect of a marginal 

change in the variable in terms of deaths, one can still obtain per period marginal effects, which 

(in all likelihood) will differ in magnitude. One can do this by simply multiplying the fixed 

coefficient on the continuous independent variable by the ratio of the values of the independent 
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and dependent variables for each period. When the independent variable is, for example, a dummy 

variable, one cannot, of course, calculate per period impacts in this way.  

 

The advantage of the approach that Evans (2007a; 2007b) uses is that the out-of-sample differences 

between the predicted and actual values are for each period. This represents the second area in 

which we enhance previous modelling approaches: namely, that statistical inference for the 

differences between the predicted and actual values is for the entire out-of-sample period. To 

achieve this, we use a further novel empirical specification of the Poisson model to introduce 

additional richness that includes weekly COVID / lockdown identifier variables. These variables 

take a value of 1 in an individual week during the COVID / lockdown period and zero otherwise. 

Whereas the fitted coefficients on the dummy variables from our baseline models represent the 

mean weekly estimates of the impact on deaths of COVID and the lockdown, the fitted coefficients 

on the COVID and lockdown identifiers represent rich estimates of the weekly deviations around 

the relevant mean estimate. 

 

Notwithstanding that statistical studies of COVID deaths and infections is very much an evolving 

area, our study differs from two types of studies that have recently emerged. The first type focuses 

on the transmission of COVID infections using cross sectional / panel data  methods (e.g., Qiu et 

al., 2020, Liu et al., 2020, and Baum and Henry, 2020), where the latter draws on developments 

in the spatial econometrics literature (e.g., Glass et al., 2016, Baltagi et al., 2007, and Kelejian and 

Prucha, 2010). As a result of these studies using cross-sectional / panel data, they are very different 

to our study as they analyse the transmission of infections across Chinese cities (Qiu et al., 2020), 

approximately 100 countries / regions (Liu et al., 2020) and counties in the US (Baum and Henry, 

2020). In contrast, we conduct a time series analysis at the country level. The second type of study 

is more similar to our approach, as this type of study corresponds to a time series analysis of 

infections (e.g., Wood, 2020, and Benvenuto et al., 2020). Our analysis differs from these time 

series studies as we focus on the issue of measuring excess deaths due to COVID.  

 

Three key findings from our empirical analysis are as follows. First, although it has been widely 

reported that COVID-19 has been highly concentrated in the elderly, we find that it has been 

particularly concentrated in the very elderly (75-84 and 85+ years), and less so in the 65-74 age 

category. Second, using two sets of COVID identifiers, we find from the beginning of the two 

periods when we assume the lockdown was having an impact, through to the end of our study 

period (week ending 17th or 24th April 2020 - week ending 8th May 2020), that our weekly estimates 

of COVID deaths for five cases (the total; the 75-84 and 85+ age categories; males; and females) 

diverge from the corresponding 5 year average excess deaths measure. Over these periods, we find 

that, on average per week, our estimates of COVID deaths for these five cases were (in absolute 
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terms) considerably below the corresponding 5 year average excess deaths measure. For example, 

on average per week, our estimate of total COVID deaths over these periods was lower than the 

corresponding 5 year average excess deaths measure by 4670-4727 deaths (54%-63%). For the 

above five cases, and in line with our hypothesis, we posit that the 5 year average excess deaths 

contains a large number of non-COVID deaths. Third, and relatedly, our analysis suggests that the 

UK’s lockdown has had a net positive impact on mortalities. That is to say, it resulted in more, not 

less, deaths. Intuitively, this may be due to the unintended consequences of the lockdown (for 

example, a substantial reduction in the provision of, or access to, other forms of critical healthcare) 

dominating its intended consequences. 

 

The remainder of this paper is organised as follows. Section 2 comprises three parts. In the first 

part we assess further the limitations of the COVID associated deaths and excess deaths methods. 

The second part discusses the implications of the UK Government’s lockdown policy for the 

mortality rate. In the third part we consider the extant literature to inform the choice of variables 

to explain all-cause mortality in the empirical models. In section 3 we present the empirical 

methodology, which involves a general presentation of the specifications of the Poisson model we 

estimate. Section 4 provides details of the empirical specifications, data and variables, and section 

5 presents and analyses the empirical results. In section 6 we conclude and discuss the scope for 

further work. 

 

2. Details of the Measures of COVID Deaths, UK Government Policy and the Relevant 

Literature 

 

2.1 Further Assessment of the Current Measures of COVID Deaths in England and Wales 

With regard to the COVID associated deaths method, the lack of a reliable record of causality 

between COVID infection and the subsequent death has been the case since the method’s 

inception. The problem, though, will be more pronounced since the previously discussed method 

change on April 29th 2020. This issue is well known and is set out transparently by the ONS itself, 

which states: “deaths of people who have tested positively for COVID-19 could in some cases be 

due to a different cause.” Due to this major limitation, we noted above that a consensus has formed 

around excess deaths being a preferred measurement approach. 

 

Given the above consensus and, as a result, our use of an excess deaths modelling framework, we 

focus our attention on the excess deaths method in this discussion. Such a consensus is consistent 

with the wider, and long-established, academic literature regarding the measurement of the impact 

of specific events and / or disease and illness on mortality, where it is well accepted that ‘direct’ 

measures of death are inherently subject to recording error. This makes ‘indirect’ (in practice, 

typically statistical) approaches that identify excess deaths preferable. Indeed, and of particular 
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relevance to the challenges in measuring COVID-19 deaths, this framework is commonly used to 

analyse drivers of variation in influenza mortality rates over time and across countries. For 

example, Simonsen et al. (1994) apply this approach to identify cyclical deaths relating to 

influenza epidemics, noting that: “influenza diagnoses are generally not laboratory confirmed… 

given this incomplete identification [of cause of death] an indirect approach involving statistical 

modelling has long been used to estimate the seasonal excess mortality attributable to influenza.” 

Alling et al. (1981) apply a regression analysis to identify excess mortality in the US between 1968 

and 1976 for this same reason. Lui and Kendell (1987) similarly use cyclical regression analysis 

to identify instances where mortality is ‘higher than expected’ (i.e., predicted by regression 

models) to understand the impact of influenza epidemics in the US from 1972 to 1985. The 

challenges and issues associated with the measurement of mortality and an understanding of its 

causes are long-standing. In fact, the use of statistics in relation to these issues seems to date back 

to the work of William Farr (1885, pp. 166-205), who wrote reports on the 1847/48 influenza 

epidemic in London. 

 

Whilst an excess deaths approach does not suffer from the above measurement limitation, we noted 

that reported COVID deaths under this method may nonetheless overstate true excess deaths due 

to the pandemic. This is because COVID may have modestly brought forward deaths that would 

otherwise have occurred at some future point in the year. Of relevance to this, we noted above that 

COVID deaths are highly concentrated in the elderly, in line with the ONS data reported in table 

1. This concept is recognised in the epidemiology and public health literature and is generally 

referred to as mortality displacement (Kaiser et al., 2007). To illustrate this further, figures 1, 2a 

and 2b present for England and Wales total weekly deaths, and deaths by age category, over the 

last 10 years. As can be seen, the COVID peak is essentially always the highest datapoint. 

Nonetheless, peaks are observed every year, typically in the winter (flu season). Thus, rather than 

the ‘whole’ of the COVID peak being excess deaths (which is, in essence, what any 

contemporaneous comparison of a weekly deaths to a 5 year average implies) it might be that only 

the increment between the COVID peak (April 2020) and other more typically historically 

observed peaks, is truly excess due to COVID.  
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Table 1: COVID associated deaths in England and Wales up to the week ending 29 May 2020 

Age group Proportion of COVID deaths accounted for 

<10 0.0% 

10-19 0.0% 

20-29 0.2% 

30-39 0.4% 

40-49 1.4% 

50-59 4.6% 

60-69 9.8% 

70-79 22.6% 

80-89 39.4% 

90+ 21.6% 

Total 100% 

Note: The COVID associated measure is used here purely for the purpose of indicting the distribution of deaths by 
age. As discussed above, it is unlikely to provide a reliable measure of the number of deaths arising from the 
pandemic. 

 

Figure 1: Weekly deaths in England and Wales from 8 January 2010-15 May 2020 
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Figure 2a: Weekly deaths in England and Wales for three age categories from 8 January 2010-15 May 2020 

 
 

Figure 2b: Weekly deaths in England and Wales for a further four age categories from 8 January 2010-15 

May 2020 

 
 

 

To explore the extent to which reported COVID deaths overstate the true number of excess deaths 

due to the pandemic, it is helpful to examine how unique the COVID peak in figure 1 is over a 

longer period of time. By reviewing monthly mortality data, as opposed to weekly above, it is 

possible to compare spikes in deaths over a longer period – from June 2006 to April 2020. Using 

this data, we have examined the extent to which the COVID peak is an outlier based on two 
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methods. First, figure 3 shows for England and Wales the percentage difference between: (i) the 

peak monthly mortality in each year; and (ii) the average monthly mortality across the whole time 

period. Second, figure 4 presents for England and Wales the peak monthly mortality in each year 

as a percentage of the COVID mortality peak. 

 

Figure 3: Difference for England and Wales between peak monthly mortality in a year and the 

long-term average monthly mortality (January 1998-April 2020) 

 

 
 

Figure 4: Peak monthly mortality in a year for England and Wales as a percentage of April 2020 
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Figures 3 and 4 demonstrate that, although the COVID peak in April 2020 represents the highest 

mortality in recent years by some distance, there have been spikes in other years that have also far 

exceeded the average. Figure 3 shows that the number of deaths in April 2020 is just short of 90% 

higher than the average. Moreover, figure 4 reveals that there have been cases where the peak 

mortalities in the pre-COVID years have been well over 80% of COVID mortality.  

 

Overall, then, although COVID mortality is particularly high, we have observed that there have 

been high prior peaks. This might suggest that, if deaths have in fact been ‘brought forward’, the 

current excess deaths numbers may be overstated. The plausibility of this is persuasive, when 

considered in parallel with the fact that the probability of dying from COVID-19 is not equal across 

the population, as mortalities are highly concentrated in the elderly and those with underlying 

medical conditions. 

 

2.2 UK Government Policy and its Role in Explaining COVID Mortality 

The primary objective of this paper is not to evaluate whether or not UK Government COVID 

policy (i.e., the lockdown) has been effective. Rather, our goal is simply to derive a more robust 

measure of COVID-19 excess deaths. Nonetheless, because Government policy itself may have 

impacted the mortality rate, this question cannot be ignored. Here, there are two potential impacts 

to consider. 

 

First, the direct (and intended) impact of any policy intervention would typically be to spread out 

(and potentially reduce) overall mortalities. In the UK, the rationale for social distancing and the 

subsequent lockdown forwarded by both Government and its scientific advisors was framed 

around two concepts: (i) Mitigation (slowing, but not stopping, epidemic spread). The purpose of 

this is to lower peak healthcare demand in order to protect the NHS. (ii) Suppression; this would 

aim to reverse epidemic growth by reducing case numbers to very low levels (Ferguson et al., 

2020). In practice, in the absence of a vaccine or viable treatment for COVID-19 in the near term, 

the second rationale and objective is unachievable. Hence, the policy choices were framed around 

rationale (i). Accordingly, policymakers adopted the language of ‘flatten the curve’ and ‘protect 

the NHS’. In principle, rationale (i) might itself reduce total mortalities (relative to the 

counterfactual of no government action). For example, preventing the NHS being overwhelmed 

may itself achieve this. Thus, to the extent that the policy is successful, this would lead to a 

negative association between overall mortality and the policy response. However, unlike the 

previous mentioned drivers of mortality used in the literature (see subsection 2.3), the lack of 

historical precedent for the policy responses currently being enacted, means we have no a priori 

expectation as to whether said responses would achieve their stated aims. 
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Second, the indirect (and unintended) impact of policy interventions may well be increasing 

mortality. For example, under the UK lockdown, certain medical treatments were suspended by 

the NHS, or became harder to access. Cancer Research UK (2020) reported that: (i) cancer 

screening was suspended; (ii) early cancer diagnoses were materially impacted; and (iii) “despite 

national guidelines stating that urgent and essential cancer treatments must continue, 

unfortunately this is not the case in some hospitals across the UK.” In addition, the British Heart 

Foundation (2020) reported a 50% drop in heart attack A&E attendances. The Stroke Association 

similarly has reported large reductions in hospital admissions for strokes (Clinical Services 

Journal, 2020). 

 

A sense of the scale of the indirect impacts can be seen by examining data on A&E attendance and 

admissions in England. Figure 5 provides a monthly time series of this from January 2011 to April 

2020. As can be seen from this figure, A&E attendance and admissions have collapsed during the 

COVID period, with the number for April 2020 being some 48% lower than that for the same 

month in 2019. 

 

Figure 5: A&E attendance and emergency admissions in England 

 

 
 

The above considerations are critical for any robust analysis of excess COVID deaths. The key 

points are as follows: 

• The UK Government’s policy response may, in principle, have two opposing impacts on 

mortality. Therefore, there is no null hypothesis that the policy response should reduce, or 

increase, mortality. The expected impact is ambiguous. 



13 

 

 

• Because it is possible that the net impact of the UK Government’s policy response is 

negative, or neutral, it is important to control for it in any models, if possible. This is 

because a failure to do this may incorrectly attribute the above indirect impact (unintended 

consequences) of the policy to COVID-19 itself. That is to say, deaths arising from people 

not being treated for cancer due to lockdown would be assigned to COVID-19, rather than 

(correctly) ascribing these to the policy response. Here, we note that media discussion 

sometimes conflates this with ‘collateral’ impacts of COVID-19. This appears unsound, as 

these mortalities may not have arisen without the policy response. In any case, so long as 

both COVID and the policy response are parameterised in any models, one can seek to 

resolve this matter through evidence. 

 

Regarding the first point above (that there is no null hypothesis that the policy response should 

either reduce, or increase, overall mortalities) one must further be mindful of the interpretation of 

the UK Government’s decision to impose a lockdown on March 23rd, and the continued downward 

trend in deaths after that date. Specifically, one might naively conclude from such a trend that 

lockdown did, in fact, reduce mortalities. However, this naïve comparison of the date of a policy 

response and a mortality trend, in and of itself, provides no evidence that said response reduced 

mortalities in net terms. This is both for the reasons set out above (i.e., the number of COVID 

deaths being incorrectly measured), but also because it fails to take account of the time lag between 

infection, symptom onset, and death. 

 

The second issue above (the time lag) is relevant to our work because, given the need to incorporate 

the policy response into the modelling in order to robustly measure excess COVID deaths, it is 

important to do so in a way that accurately reflects the epidemiology evidence. In practice, the 

evidence on time lags remains subject to uncertainty. However, the World Health Organization 

(WHO, 2020) has estimated the mean incubation period (infection to being symptomatic) to be 5-

6 days, with a maximum of 14 days (consistent with Government quarantine advice). Lauer et al. 

(2020) also suggest a 5 day incubation period. 

 

Verity et al. (2020) calculate the average time lag between symptom onset and outcomes (death 

or recovery). The study was based on individual case level data for patients that died from COVID-

19 in Hubei, China. Based on this data, they found the mean duration from symptom onset to death 

was 17.8 days (with a 95% confidence interval of 16.9 to 19.2 days). Also, in relation to the time 

from symptom onset to death, the WHO (2020) estimated this to range from 2 to 8 weeks. 

 

Currently available information might therefore suggest a total time lag between infection and 

mortality to be around 23 days on average (5 days to become symptomatic; plus 18 days to death). 

However, the WHO figures imply a longer overall period of 40 days (5 days to become 
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symptomatic; plus the mid-point of their 2 to 8 week range above – 35 days). Combined the data 

therefore suggests the average total elapsed time from infection to death lies between >3 to <6 

weeks. 

 

2.3 Literature to inform the Choice of Variables to Explain Mortality 

To develop a statistical approach to measure the incremental impact of COVID-19 on mortalities 

in England and Wales, it is necessary to ascertain the broader relevant factors that explain 

mortality. The public health, virology, epidemiology and economics literature point to a number 

of potentially relevant variables.  

 

Cutler et al. (2006) set out a review of the main determinants of mortality in a historical context. 

Whilst they find it challenging to point definitively to specific drivers, they cite: public health; 

socioeconomic status; income (although they somewhat caveat this); urbanisation; and medical 

care and resources. Rogers (1979) finds that income distribution is consistently and strongly 

related to mortality. Soares (2007) explores the factors that have contributed to falling mortality 

rates in the developing world. The author finds weak support for income as a driver, instead finding 

evidence relating to public health, immunisation and knowledge transfer being more pertinent. 

 

Consistent with the data set out in this paper, the literature discusses the cyclical nature of 

mortality, with mortality rates typically having a strong seasonal pattern. Nogueira et al. (2009) 

estimate the excess mortality associated with the influenza activity registered in Portugal between 

2008 and 2009. To reflect the well-established seasonal pattern of influenza, cyclical regressions 

were used. 

 

In addition, various studies have found relationships between temperature and mortality (i.e., 

separate to cyclical or seasonal patterns per se). This literature points to multifaceted relationships. 

For example, whilst ‘on average’ mortality may decline with temperature, extreme cold or heat 

wave events may increase mortality. For example, using techniques for lagged cross-correlation 

and spectral analyses, Cech et al. (1979) found that the mean temperature is negatively associated 

with mortality in Japan (i.e., less deaths as average temperatures rise). However, the authors also 

found that more extreme temperatures (either hot or cold) increase mortality. Consistent with this, 

Huynen et al. (2001) undertook a statistical analysis of the impact of ambient temperature on 

mortality in the Netherlands (1979-1997). The authors found a ‘V-like’ relationship, whereby 

mortalities were typically lower within an optimal temperature range, but increased during more 

extreme cold spells or heat waves. They estimated the optimal temperature in the ‘V’ to be 16.5 

degrees Celsius. 
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Willers et al. (2016) find that air pollution is a significant driver of mortality and that this may 

further be associated with peak summer temperatures (although as noted above, the literature more 

broadly identifies higher mortality in the winter and lower mortality in the summer). 

 

Chaix et al. (2006) use a statistical approach to distinguish between variances in mortality due to 

population density and socioeconomic factors in Scania, Sweden. Using a longitudinal approach, 

with data from 1970 to 1993, the authors conclude that population density effects dominate. Meijer 

et al. (2012) examine the relationships between population density and ‘area level’ socio economic 

factors on all-cause mortality in Denmark. The authors found all-cause mortality increased with 

population density for all age groups. Socioeconomic factors seemed to have somewhat more of 

an effect on mortality amongst the elderly. 

 

Given this study’s focus on England and Wales, it is also helpful to consider recent UK specific 

evidence regarding drivers of mortality. Recently Murphy et al. (2019) carried out a review of the 

decline in the UK’s rate of mortality improvements. Overall the authors consider the evidence 

insufficient to point to any one clear factor, or factors, as explaining the UK’s stalled mortality. 

However, of relevance to the choice of variables to explain mortality, they consider the primary 

explanatory factors to be: demographic changes (aging population); international migration; 

declining cardiovascular disease (the causes of which are themselves multidimensional); austerity 

(spend on health care services); and cohort effects. 

 

Drawing the existing evidence base together, potentially relevant variables to explain all-cause 

mortality can be broadly characterised as follows: 

• Environmental / seasonal patterns. Data typically shows higher mortality in the winter / 

poor weather; and lower mortality in the summer / better weather. Temperature can impact 

mortality in its own right, but the relationship may be non-linear. Air pollution can be 

positively associated with mortality, which itself may interact with air temperature. 

• Demographics. As older people are generally more likely to die, mortality rates are higher 

amongst populations with a higher proportion of elderly people. 

• Income / socio-economic factors. Poverty / average income is sometimes cited as a 

contributory factor in mortality rates. The empirical evidence associated with this appears 

more mixed. 

• Population density. Various studies have shown a positive association between population 

density and all-cause mortality. This is likely to be more relevant in the context of virus 

related mortality, as transmission rates are intuitively increased where populations are more 

densely located. 

• Healthcare expenditure and resources. Mortality may fall with investment in healthcare 

and / or where healthcare resources are increased. 
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• Public health. In particular, factors such as obesity, smoking, etc. may cause mortality to 

vary. 

 

It is clear that the potential variables to explain all-cause mortality are complex and 

multidimensional. The existing literature does not, therefore, provide definitive answers as to 

which factors are necessarily most important for inclusion in an empirical model, which is context 

specific. Nonetheless, the evidence indicates that variables across the above categories should 

generally be given consideration. 

 

3. General Presentation of the Poisson Model Specifications 

For each measure of deaths that we analyse, we assume that the observed number of deaths (y) 

follows a Poisson distribution: 

𝑦~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 [𝜇(𝑚)], 

where the density of y is determined by the conditional mean 𝜇(𝑚) ≡ 𝐸(𝑦|𝑚) and m represents a 

set of determinants. We use a number of specifications of a parametric model for 𝜇(𝑚). The 

general form of our baseline specification of this model is as follows. 

𝜇(𝑚) = exp (𝛽′𝐗 + 𝛾𝐶𝑂𝑉𝐼𝐷 + 𝛿𝐿𝑜𝑐𝑘𝐷),   (1) 

where the set of determinants m are in brackets on the right-hand side. 

 

COVID and LockD are dummy variables that take values of zero before the beginning of our 

COVID and lockdown periods and 1 from there onwards, respectively. The weekly time series 

data comprise T periods, which are indexed t∈1,…,T. The set of time periods in our COVID period 

is denoted J and the set of time periods in our lockdown period is denoted K. K⸦J and the periods 

in J and K are indexed j∈1,…,J and k∈1,…,K. X is a matrix that represents the observations for 

the set of other independent variables, and to be estimated are the parameters 𝛾 and 𝛿 and the 

vector of parameters 𝛽′. The intercept term (β0) is included within 𝛽′ by defining the vector x0,t=1 

(Ɐt) in X. The estimate of 𝛾 is the estimate of the average weekly deaths due to COVID, and the 

estimate of 𝛿 is the estimate of the average weekly change in deaths due to the lockdown. 

Throughout our empirical analysis the parameters of the models are estimated using maximum 

likelihood estimation. 

 

The general form of our first novel specification of the model for 𝜇(𝑚) with identifier variables is 

as follows. 

𝜇(𝑚) = exp (𝛽′𝐗 + 𝜆1𝐶𝑂𝑉𝐼𝐷1 + ⋯ + 𝜆𝐽𝐶𝑂𝑉𝐼𝐷𝐽 + 𝛿𝐿𝑜𝑐𝑘𝐷),  (2) 

where here we replace 𝛾𝐶𝑂𝑉𝐼𝐷 in Eq. 1 with the J COVID identifier terms 𝜆1𝐶𝑂𝑉𝐼𝐷1 + ⋯ +

𝜆𝐽𝐶𝑂𝑉𝐼𝐷𝐽. A COVID identifier variable takes a value of 1 in the relevant week in the COVID 

period and zero otherwise, and 𝜆1, … , 𝜆𝐽 are parameters to be estimated. The mean of the estimates 

of 𝜆1, … , 𝜆𝐽 will approximate the estimate of the mean weekly deaths due to COVID (𝛾) from Eq. 
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1. As a result, we can interpret the estimates of 𝜆1, … , 𝜆𝐽 as estimates of the weekly deviations of 

deaths due to COVID about the estimate of 𝛾.    

 

The general form of our second novel specification of the model for 𝜇(𝑚) with identifier variables 

is along the same lines as Eq. 2, but involves replacing 𝛿𝐿𝑜𝑐𝑘𝐷 in Eq. 1 with the K lockdown 

identifier terms 𝜂1𝐿𝑜𝑐𝑘𝐷1 + ⋯ + 𝜂𝐾𝐿𝑜𝑐𝑘𝐷𝐾. A lockdown identifier variable takes a value of 1 

in the relevant week in the lockdown period and zero otherwise, and 𝜂1, … , 𝜂𝐾 are parameters to 

be estimated. For the same reason we gave in the above discussion of Eq. 2, we can interpret the 

estimates of 𝜂1, … , 𝜂𝐾 as estimates of the weekly deviations about the estimate of the mean weekly 

change in deaths due to the lockdown (𝛿) from Eq. 1. 

 

4.  Details of the Empirical Model Specifications, Data and Variables 

The following description of the data and variables is accompanied by table 2, which provides the 

data sources and descriptive statistics for the continuous variables. To estimate the models, we use 

weekly time series data for the period week ending 8 January 2010 - week ending 15 May 2020. 

Following on from the general presentation of the model specifications in the previous section, the 

measures of deaths that we analyse and assume are Poisson distributed are: total weekly all-cause 

deaths in England and Wales (Total Deaths); weekly all-cause deaths in England and Wales by 

age category (under 1 year; 1-14 years; 15-44 years; 45-64 years; 65-74 years; 75-84 years; and 

85+ years, denoted Deaths(<1), Deaths(1-14), etc.); and weekly all-cause male and female deaths 

in England and Wales (Male Deaths and Female Deaths).4  

 

For each of the measures of deaths, there are six empirical model specifications. These 

specifications differ according to the inclusion of a COVID and / or lockdown dummy variable 

and / or whether the specification includes COVID or lockdown identifier variables. The first two 

model specifications are baseline specifications, because they include COVID and lockdown 

dummy variables, and thus yield average estimates of the weekly change in deaths due to COVID 

and the lockdown. Details of the dummy variables in the first two model specifications are as 

follows.  

 

(i & ii) In the first baseline model specification (Base 1) we include a COVID dummy that takes 

a value of 1 for the week ending 6 March 2020 onwards and zero otherwise 

(COVID4Week); and a lockdown dummy that takes a value of 1 for the week ending 24 

April 2020 onwards and zero otherwise (LockD4Week). As regards the appropriate 

 
4 The data for the measures of deaths are for England and Wales and not also for Scotland and Northern Ireland. This 

is because the Scottish and Northern Irish data are not comparable to the English and Welsh data. To illustrate, for 

Scotland the weekly data is total all-cause deaths and is not by age category. Scottish all-cause deaths data by age 

category is only available annually up until 2018. In the case of Northern Ireland, the only available data is monthly 

total all-cause deaths. 
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starting point for the COVID dummy, there are two considerations. The first is that there 

is some uncertainty as to precisely when COVID may have impacted mortalities. 

Specifically, the first confirmed cases of COVID were at a hotel in York on 31 January 

2020 (BBC, 2020). Allowing for the above mentioned lag between infection and 

mortality, this would indicate a dummy starting date of late February to mid-March (our 

date for the COVID dummy of the week ending 6 March represents a 4 week lag). 

However, modelling by the University of Oxford suggests there may have been COVID 

infections prior to 31 January, potentially in December or early January (Financial 

Times, 2020). The second consideration is a modelling one. That is to say, the impact 

of COVID on mortality may be difficult to identify early on in the time period. Our 

assumption regarding the start date for the lockdown dummy reflects the fact that the 

UK Government’s lockdown policy became active on Monday 23 March 2020. If we 

then similarly allow for an appropriate (4 week) time lag to capture the gap between 

infection and mortality, this is consistent with the dummy taking the value of 1 from the 

week ending April 24th.  

 

The coefficients on the COVID and lockdown dummies may be sensitive to our 

assumptions about the start of the COVID period and the lag between infection and 

mortality (which would determine when the lockdown policy may have first had an 

effect). We investigate this in the second baseline model specification (Base 2), by 

replacing COVIDD4Week and LockD4Week in Base 1 with a COVID dummy and a 

lockdown dummy that take a value of 1 from one week earlier (week ending 28 February 

2020 and 17 April 2020, respectively) and zero otherwise (COVID3Week and 

LockD3Week). These revised assumptions that COVID3Week and LockD3Week are 

based on represent a closer approximation to the estimate of 23 days from infection to 

mortality than the 4 week assumption of COVIDD4Week and LockD4Week. 

 

The four remaining model specifications all include novel weekly identifier variables that pertain 

to individual weeks in the COVID / lockdown period. The third and fourth specifications (COVID 

IdentV1 and COVID IdentV2) include COVID identifier variables, and the fifth and sixth 

specifications (LockD IdentV1 and LockD IdentV2) include lockdown identifier variables. From 

COVID IdentV1 and COVID IdentV2, we obtain estimates of the weekly deviations in COVID 

deaths around the mean weekly estimates from the Base 1 and Base 2 specifications. From LockD 

IdentV1 and LockD IdentVar2, we obtain estimates of the weekly deviations in the change in 

deaths due to the lockdown about the mean weekly estimates of the change from Base 1 and Base 

2. Details of the identifier variables in the COVID IdentV1, COVID IdentV2, LockD IdentV1 and 

LockD IdentV2 model specifications are as follows. 
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(iii & iv) The COVID IdentV1 model specification is the Base 1 specification with LockD4Week 

retained and COVID4Week replaced with 10 weekly COVID identifier variables 

(COVID6Mar, COVID13Mar,…,COVID8May). The COVID IdentV2 model 

specification is the Base 2 specification with LockD3Week retained and COVID3Week 

replaced with 11 weekly COVID identifier variables (COVID28Feb, 

COVID6Mar,…,COVID8May). A COVID identifier takes a value of 1 in the relevant 

week during the COVID periods for the Base 1 and Base 2 model specifications and 

zero otherwise. The COVID periods for Base 1 and Base 2 actually span 11 weeks and 

10 weeks, but to fit the model we must drop one COVID identifier in the lockdown 

period, which is for the last week. This is because, although the COVID identifiers 

account for individual weekly effects, by dropping one during the lockdown period the 

COVID identifiers during this period will not collectively account for the same effect 

as LockD4Week or LockD3Week. 

 

 (v & vi) The LockD IdentV1 model specification is the Base 1 specification with COVID4Week 

retained and LockD4Week replaced with 4 weekly lockdown identifier variables 

(LockD24Apr,…,LockD15May). The LockD IdentV2 model specification is the Base 2 

specification with COVID3Week retained and LockD3Week replaced with 5 weekly 

lockdown identifier variables (LockD17Apr,…,LockD15May). A lockdown identifier 

takes a value of 1 in the relevant week during the lockdown periods for Base 1 and 

Base 2 and zero otherwise. We do not need to drop one of the lockdown identifiers to 

estimate LockD IdentV1 and LockD IdentV2 because the assumed COVID period (as 

represented by COVID4Week or COVID 3Week) is longer than the assumed lockdown 

period.  

 

Before we discuss the continuous independent variables, we note that we include two further 

dummy variables to take account of the variation in mortality according to the time of year. The 

two dummy variables (Summer and Winter) we include are for the summer (Jun, Jul and Aug) and 

winter (Dec, Jan and Feb) months.  

 

Since data for the measures of deaths are rather high frequency, we are faced with some decisions 

regarding the independent variables when the available data are of a lower frequency and / or are 

for a different time period. In the case of the percentages of the UK population by age (1 year, 2 

years,…, 90+ years), the ONS data is annual and the most recent data are for 2019. We include as 

an independent variable in all the models the percentage of the population that is 90+ years 

(Share90+) because COVID deaths have been highly concentrated in the elderly. Also, any 

changes over time in population percentages that relate to the elderly that are aged below 90 will 

conceivably be positively correlated with Share90+. This is because the quality of healthcare of 



20 

 

 

the elderly and their quality of life are likely to be positively correlated across elderly age 

categories. We also assume that the annual Share90+ percentage applies to each week in the 

relevant year.5 This is with the exception of the weeks in 2020, for which a Share90+ observation 

is not available. In this case we assume the 2019 Share90+ observation applies. In normal times 

this would not be unreasonable, because Share90+ is not likely to differ greatly between 

consecutive years. Of course, 2020 does not represent normal times because the actual annual 

Share90+ for 2020 will be affected by COVID-19 deaths. That said, the effect of COVID deaths 

on the actual Share90+ for 2020 is a source of endogeneity that we circumvent by assuming that 

our 2020 observation is equal to that for 2019.  

 

If the data for Share90+ was of a higher frequency, such as weekly, this variable would be 

endogenous in the Deaths(85+) model, and also possibly the Deaths(75-84) model, because 

Deaths(85+) and Deaths(75-84) are likely to be positively correlated. As Share90+ is constant in 

our dataset across the weeks in any year, it is not therefore endogenous in the Deaths(85+) and 

Deaths(75-84) models (because no weekly observation for either of these measures of deaths could 

feasibly influence the annual measure of Share90+). Moreover, using the same approach as we 

use to construct the Share90+ variable, we construct average weekly population density across 

local authorities in England and Wales (PopDen measured as people per sq. km). We use this 

approach because, first, the data is available annually up to and including 2019 and, second, 

population density will be largely stable over the course of a year.  

 

The available temperature data for England and Wales are mean monthly measures for each 

country. We therefore constructed a mean monthly temperature measure across the two countries 

(weighted by their annual populations).6 We then assumed that this weighted mean applied to each 

week in the relevant month (Temp). This is because only the frequency of the available data 

differed from our sample and not the time period. We therefore consider that the difference 

between using our weighted mean monthly temperature at the weekly level, and the actual mean 

temperature for the week, is unlikely to be material. It turns out that this does not appear to impact 

on the estimated models, which is likely because it is marked changes in mean temperature that 

lead to material changes in deaths, and not incremental temperature changes. 

 

 
5 Although this assumption may not be particularly realistic because relatively more (fewer) elderly people die in the 

winter (summer) leading to a decline (rise) in Share90+, it turns out that it does not materially impact our estimated 

models. This is likely to be because Share90+ represents a very small percentage of the population. Any changes in 

Share 90+ therefore are likely to be relatively small and will not constitute big departures from our assumption that 

the annual Share90+ percentage applies to each week in the relevant year. Moreover, a big advantage of making this 

assumption is that Share90+ is exogenous, which would not be the case if we used higher frequency data where in 

each year Share90+ decreased (increased) in the winter (summer). 
6 Population data for England and Wales was not yet available for 2020. We therefore estimated the 2020 data by 

extrapolating. 
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We explored the possibility of including independent variables to account for air pollution, 

government healthcare expenditure and public health (i.e., the prevalence of obesity and smoking). 

Ultimately, we concluded that it was not feasible to do so. This was because we could not adopt 

the same approach to the inclusion of these variables as we do for Share90+ and PopDen. Like 

Share90+ and PopDen, the data for air pollution, government healthcare expenditure and public 

health are available annually and are collected with a time lag, and, as a result, the data for 2019 

and 2020 are not yet available. Extrapolating to obtain estimates of the 2019 and 2020 observations 

for these variables is not the issue. Doing so would still leave the problem of the apportionment of 

the annual data for these variables to the weeks in our sample. This is because with these variables 

we cannot reasonably assume, as we did when constructing the Share90+ and PopDen variables, 

that the weekly observations remain reasonably fixed over the course of a year. Air pollution, for 

example, will vary according to weekly economic activity. 

 

The mean temperature variable and air pollution, however, are related. As we noted in subsection 

2.3, although temperature can impact mortality in its own right, the relationship may be non-linear. 

This is, in part, because air pollution can be positively associated with mortality, which is an effect 

that may interact with air temperature. We attempt to account (to some extent) for this non-

linearity, and the effect of air pollution on mortality, by including Temp2. 

 

It is natural to think about using real GDP per capita as the income measure in a country level 

analysis of mortality. As this variable is available annually, we are faced with the same issue as 

we discussed above for the data on air pollution, government healthcare expenditure and public 

health. Namely, if we were to use real GDP per capita, there would be the problem of the 

apportionment of the annual data to the weeks in our sample. For real GDP per capita, one cannot 

reasonably assume that the weekly observations are reasonably fixed over the course of a year, so 

that the annual data can be apportioned equally to each week. To circumvent the difficulty involved 

in appropriately apportioning this annual data to weeks and to use a measure of economic activity 

that has the desirable feature of weekly variation, we use the 4 week rolling average of the FTSE 

All-Share Index (FTSE All). We use the FTSE All-Share Index (rather than the FTSE 100 Index / 

FTSE 250 Index) as it provides a greater coverage of market capitalisation (98-99%). This is 

evident as it is the aggregation of the FTSE 100, 250 and Small Cap indexes.  

 

  



22 

 

 

Table 2: Data sources and summary statistics 

Variable Source Mean St. Dev. Min Max 

Total Deaths ONS 10005.9 1605.3 6606.0 22351.0 
Deaths(<1) ONS 54.3 9.5 22.0 85.0 

Deaths(1-14) ONS 19.4 5.0 7.0 38.0 
Deaths(15-44) ONS 288.4 35.1 146.0 405.0 

Deaths(45-64) ONS 1207.9 145.3 773.0 2294.0 
Deaths(65-74) ONS 1634.2 223.9 1060.0 3380.0 
Deaths(75-84) ONS 2886.8 459.0 1890.0 6657.0 
Deaths(85+) ONS 3912.8 804.5 2548.0 9601.0 
Male Deaths ONS 4896.9 789.7 3203.0 11445.0 

Female Deaths ONS 5106.8 835.3 3385.0 10906.0 
Share90+ ONS 0.9% 0.1% 0.7% 1.0% 
PopDen ONS 382.2 8.2 369.0 394.0 
Temp Met Office 9.9 4.6 -0.5 18.7 

FTSE All Datastream 3497.3 458.4 2607.9 4252.2 

      
 

5. Empirical Results and Discussion 

5.1 Estimated Models 

In table 3 we present the fitted Base 1 models for Total Deaths, Male Deaths and Female Deaths, 

all of which contain the COVID4Week and LockD4Week dummy variables. In table 4 we present 

further fitted Base 1 models for deaths by age category (under 1 year; 1-14 years; 15-44 years; 45-

64 years; 65-74 years; 75-84 years; and 85+ years). The models that correspond to those in tables 

3 and 4, but which are Base 2 models and thus include the COVID3Week and LockD3Week dummy 

variables, are presented in the Appendix in tables A1 and A2, respectively.7 In line with the focus 

of our attention, we commence the discussion of the fitted models by analysing the estimates of 

the COVID and lockdown parameters. In this subsection we provide an overall discussion of the 

results for these parameters that relates to their signs, significance and (broadly speaking) their 

relative sizes. We adopt this approach because in the next subsection we discuss the magnitudes 

of these parameters in detail. The coverage of the estimated models in this subsection closes with 

a discussion of the fitted coefficients on the other independent variables that are common to all the 

reported models. 

 

  

 
7 To aid comparisons we again report the corresponding Total Deaths model in tables 4 and A2. 
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Table 3: Total, male and female Base 1 models with COVID4Week and LockD4Week dummy 

variables 

Variable 
 

Total Deaths Male Deaths Female Deaths 
 

     
FTSE All  -0.619*** -0.268*** -0.340*** 
Temp  -234.76*** -90.37*** -145.04*** 
Temp2  3.78*** 1.20*** 2.62*** 
Winter   424.07*** 178.74*** 245.73*** 
Summer  50.69** 13.58 36.29** 
Share90+  491.62 -680.73*** 1154.45*** 
PopDen  74.93*** 49.44*** 25.53*** 
COVID4Week  3497.14*** 2072.52*** 1427.82*** 
LockD4Week  2693.21*** 1029.21*** 1662.40*** 
Constant  -15256.90*** -11800.88*** -3469.12*** 
Log-likelihood  -27718.29 -14558.91 -16348.69 

        Note: *, ** and *** denote significant at the 5%, 1% and 0.1% levels, respectively. 

 

We can see from table 3 that the coefficient on COVID4Week in the Total Deaths model is positive, 

as we would expect, and significant at the 0.1% level. We do not take logs of the variables in our 

models, so that the coefficients are in terms of deaths, which enriches the interpretation. In table 

3, therefore, the estimated COVID4Week parameter in the Total Deaths model suggests that, on 

average, there were 3,497 deaths per week during the assumed COVID period for Base 1 models 

(week ending 6 March 2020 to the week ending 15 May 2020). First impressions suggest this 

estimate is reasonable, although we postpone a detailed discussion of the actual fitted magnitudes 

of the COVID and lockdown parameters until the next subsection. The estimated COVID 

parameters in the Male Deaths and Female Deaths models in table 3 are also positive, significant 

at the 0.1% level, and are of a substantial magnitude. These parameters though are, as we would 

expect, smaller than the aforementioned COVID parameter in the Total Deaths model in the same 

table. 

 

As we discussed above, the expected sign of a lockdown parameter is ambiguous. The coefficients 

on LockD4Week in the Total Deaths, Male Deaths and Female Deaths models in table 3 are 

positive, significant at the 0.1% level and non-negligible. We therefore suggest that the increase 

in deaths due to the unintended consequences of the lockdown policy is clearly dominating the 

intended death prevention effect of the policy. It is evident from table 3 that the estimated 

COVID4Week parameter in the Male Deaths model is greater than that in the Female Deaths 

model, which may reflect a higher COVID mortality risk for males.  
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Table 4: Age category Base 1 models with COVID4Week and LockD4Week dummy variables 

Variable 
 

Total Deaths 
Deaths by Age Category 

 <1 1-14 15-44 45-64 65-74 75-84 85+ 

          
FTSE All  -0.619*** -0.001 0.001 0.004 -0.065*** -0.088*** -0.193*** -0.273*** 
Temp  -234.76*** 0.97* -0.45 -0.89 -18.22*** -20.09*** -68.68*** -126.90*** 
Temp2  3.78*** -0.04 0.01 -0.05 0.39*** 0.18 1.10*** 2.19*** 
Winter   424.07*** 1.04 -0.04 -3.32 22.07*** 58.17*** 107.24*** 239.13*** 
Summer  50.69** -0.5 -0.96 3.23 1.02 10.13 19.88* 16.99 
Share90+  491.62 -72.39*** 5.21 -381.46*** -1171.59*** -336.39** -23.57 2409.89*** 
PopDen  74.93*** 0.21 -0.21 2.71*** 15.17*** 17.23*** 16.59*** 23.87*** 
COVID4Week  3497.14*** -0.99 -1.25 20.36** 360.68*** 508.77*** 1182.00*** 1428.59*** 
LockD4Week  2693.21*** -3.42 -0.17 18.47 178.91*** 205.23*** 690.64*** 1600.74*** 
Constant  -15256.90*** 38.23 94.31** -407.96*** -3203.37*** -4197.86*** -2268.57*** -5499.82*** 
Log-likelihood  -27718.29 -1947.23 -1598.25 -3116.86 -4957.20 -5969.43 -9885.67 -16093.56 

Note: *, ** and *** denote significant at the 5%, 1% and 0.1% levels, respectively. 
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Table 3 also reveals that the estimated COVID4Week parameter in the Total Deaths and Male 

Deaths models is greater than the corresponding LockD4Week parameter, while the opposite is the 

case in the Female Deaths model. Table 4 indicates that the latter is due to the relatively large 

increase in deaths in the 85+ age category during the lockdown. This is evident as the Deaths(85+) 

model is the only one in table 4 where the COVID4Week and LockD4Week parameters are both 

significant (and the latter is larger than the former). More specifically, when we estimate the same 

Base 1 model specification for Male Deaths(85+) and Female Deaths(85+), it is clear from these 

(unreported) models that it is the female 85+ model where the LockD4Week parameter is 

(substantially) greater than that for the COVID4Week variable.8 The relative size of these two 

parameters suggests that the unintended consequences of the lockdown, such as a lack of 

appropriate healthcare during this period, were particularly felt by females in the 85+ age category. 

 

We can see from table A1 that when we employ the Base 2 model specification, the COVID3Week 

(LockD3Week) parameter is positive, non-negligible and significant at the 0.1% level in the models 

for Total Deaths, Male Deaths and Female Deaths. That said, the magnitude of the COVID3Week 

(LockD3Week) parameter in each of these models is notably smaller (larger) than the 

COVID4Week (LockD4Week) parameter in the corresponding model in table 3. To illustrate, the 

COVID3Week parameter in the Total Deaths model indicates that, on average, weekly total deaths 

due to COVID were 23% lower than the COVID4Week parameter suggests.  

 

In addition, whereas we noted above that the Female Deaths model is the only case in table 3 

where the LockD4Week parameter is larger than the COVID4Week parameter, we observe that the 

LockD3Week parameter is greater than the COVID3Week parameter for all three models in table 

A1. Such a contrast between the difference in the magnitudes of the LockD3Week and 

COVID3Week parameters, vis-à-vis the difference in the magnitudes of the LockD4Week and 

COVID4Week parameters, does indeed demonstrate that the COVID and lockdown parameter 

estimates are sensitive to the assumed start dates of the two periods in the modelling. As a result 

of the COVID3Week and LockD3Week variables bringing the start dates of the two periods 

forward, the aforementioned contrast arises. This is because we allow less time for the infection 

to have an impact, which reduces the estimate of COVID deaths, while at the same time we extend 

the lockdown period (which is consistent with more deaths being attributed to its unintended 

consequences).  

 

The estimates of the COVID and lockdown parameters in table 4 (A2) indicate which age 

categories are the main drivers of the COVID and lockdown results from the Total Deaths model 

in table 3 (A1). From tables 4 and A2 we can see that COVID deaths and lockdown deaths were, 

 
8 The unreported Male Deaths(85+) and Female Deaths(85+) models are available from the corresponding author 

upon request. 
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as we expected, highly concentrated in the 75-84 and 85+ age categories. Since COVID mortality 

has been highly concentrated in the elderly and, all else equal, there is a higher risk of ill-health in 

the elderly, we might have expected COVID deaths and lockdown deaths in the 65-74 age group 

to make up a larger proportion of total COVID deaths and total lockdown deaths. To illustrate, 

tables 4 and A2 indicate that COVID (lockdown) deaths in the 65-74 group are of the order of 

36%-43% (13%-39%) of COVID (lockdown) deaths in the 75-84 and 85+ categories. We therefore 

conclude that COVID deaths and deaths in the lockdown due to its unintended consequences have 

been highly concentrated in the very elderly. 

 

In table 5 we present the fitted COVID IdentV1 models for Total Deaths, Male Deaths and Female 

Deaths, all of which contain the LockD4Week dummy variable and 10 weekly COVID identifier 

variables. Table 6 presents further COVID IdentV1 models for deaths by age categories. The 

models that correspond to those in tables 5 and 6, but which are COVID IdentV2 models and hence 

include the LockD3Week dummy and 11 weekly COVID identifier variables are presented in the 

Appendix in tables A3 and A4, respectively. In table 7 we presented the fitted LockD IdentV1 

models for Total Deaths, Male Deaths and Female Deaths, all of which contain the COVID4Week 

dummy variable and 4 weekly lockdown identifier variables. Table 8 presents additional LockD 

IdentV1 models for deaths by age categories. The models that correspond to those in tables 7 and 

8, but which are LockD IdentV2 models and therefore contain the COVID3Week dummy variable 

and 5 weekly lockdown identifier variables are presented in the Appendix in tables A5 and A6, 

respectively. 
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Table 5: Total, male and female COVID IdentV1 models with the LockD4Week dummy variable 

and 10 weekly COVID identifier variables 

Variable 
Total Deaths Male Deaths Female Deaths 

    
FTSE All  -0.121*** -0.015 -0.104*** 
Temp -252.63*** -99.28*** -153.87*** 
Temp2 4.16*** 1.38*** 2.81*** 
Winter  384.26*** 158.91*** 226.01*** 
Summer 92.56*** 35.12** 56.49*** 
Share90+ -482.24 -1182.87*** 685.33*** 
PopDen 58.40*** 40.95*** 17.54*** 
COVID6Mar -33.42 58.07 -92.75 
COVID13Mar 78.94 168.61* -89.7 
COVID20Mar -311.75** -5.48 -302.96*** 
COVID27Mar 149.67 323.19*** -169.52* 
COVID3Apr 6056.51*** 3672.39*** 2387.87*** 
COVID10Apr 8165.75*** 4823.92*** 3345.98*** 
COVID17Apr 11981.26*** 6318.48*** 5667.33*** 
COVID24Apr 7011.00*** 3831.28*** 3197.70*** 
COVID1May 3368.54*** 1629.56*** 1756.20*** 
COVID8May -1923.00*** -1017.88*** -887.99*** 
LockD4Week 4623.50*** 2271.10*** 2338.81*** 
Constant -9664.79*** -8932.57*** -763.35 

Log-likelihood -21625.53 -11116.41 -13647.02 

           Note: *, ** and *** denote significant at the 5%, 1% and 0.1% levels, respectively. 
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Table 6: Age category COVID IdentV1 models with the LockD4Week dummy variable and 10 weekly COVID identifier variables 

Variable 
Total Deaths 

Deaths by Age Category 

<1 1-14 15-44 45-64 65-74 75-84 85+ 

         
FTSE All  -0.121*** -0.002 0.001 0.008 -0.016* -0.015 -0.041** -0.066*** 
Temp -252.63*** 0.97* -0.46 -1.03 -19.96*** -22.57*** -74.41*** -134.63*** 
Temp2 4.16*** -0.04 0.01 -0.05 0.42*** 0.23 1.22*** 2.36*** 
Winter  384.26*** 1.11 -0.08 -3.37 18.11*** 52.52*** 94.64*** 222.03*** 
Summer 92.56*** -0.66 -0.92 3.06 5.4 16.71* 32.86*** 34.03** 
Share90+ -482.24 -71.17*** 5.64 -388.37*** -1268.08*** -478.71*** -325.25* 1995.10*** 
PopDen 58.40*** 0.23 -0.2 2.59*** 13.55*** 14.76*** 11.46*** 16.87*** 
COVID6Mar -33.42 7.15 1.26 19.08 -5.68 -16.4 52.27 -89.41 
COVID13Mar 78.94 4 3.31 18.8 80.75* -33.8 29.36 -21.73 
COVID20Mar -311.75** -5.21 -6.61 -16.15 2.5 -8.8 -13.24 -260.79*** 
COVID27Mar 149.67 -0.65 -5.46 -5.99 34.84 12.04 155.14** -39.57 
COVID3Apr 6056.51*** -0.24 3.58 8.25 637.84*** 1007.86*** 2106.28*** 2287.03*** 
COVID10Apr 8165.75*** -13.49* -3.33 53.49** 886.18*** 1217.49*** 2707.65*** 3310.30*** 
COVID17Apr 11981.26*** -0.73 -2.24 75.70*** 1066.55*** 1649.15*** 3745.10*** 5438.72*** 
COVID24Apr 7011.00*** -2.22 -7.24 113.26*** 611.53*** 1004.35*** 2223.33*** 3067.93*** 
COVID1May 3368.54*** -8.15 -7.95 58.72* 252.45*** 411.62*** 971.15*** 1689.78*** 
COVID8May -1923.00*** -28.09** 1.03 -53.56* -273.95*** -253.84*** -542.35*** -772.80*** 
LockD4Week 4623.50*** 4.57 1.97 12.99 445.00*** 503.67*** 1380.20*** 2266.73*** 
Constant -9664.79*** 31.96 92.90** -369.64** -2657.24*** -3365.08*** -533.57 -3124.59*** 

Log-likelihood -21625.53 -1938.71 -1593.04 -3082.21 -4473.70 -5167.83 -7848.40 -13200.47 

Note: *, ** and *** denote significant at the 5%, 1% and 0.1% levels, respectively. 
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Table 7: Total, male and female LockD IdentV1 models with the COVID4Week dummy variable 

and 4 weekly lockdown identifier variables 

Variable 
Total Deaths Male Deaths Female Deaths 

    
FTSE All  -0.589*** -0.256*** -0.330*** 
Temp -236.29*** -91.23*** -145.71*** 
Temp2 3.99*** 1.31*** 2.71*** 
Winter  434.22*** 184.24*** 250.37*** 
Summer 29.13 1.72 26.59* 
Share90+ 448.06 -703.84*** 1133.97*** 
PopDen 74.05*** 48.97*** 25.12*** 
COVID4Week 3517.76*** 2083.58*** 1437.38*** 
LockD24Apr 7598.56*** 3752.68*** 3848.72*** 
LockD1May 3966.61*** 1556.22*** 2412.44*** 
LockD8May -1307.74*** -1082.38*** -223.46** 
LockD15May 642.28*** -50.61 677.57*** 
Constant -14970.27*** -11648.21*** -3335.22*** 

Log-likelihood -26371.29 -13780.34 -15766.85 

             Note: *, ** and *** denote significant at the 5%, 1% and 0.1% levels, respectively. 
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Table 8: Age category LockD IdentV1 models with the COVID4Week dummy variable and 4 weekly lockdown identifier variables 

Variable 
Total Deaths 

Deaths by Age Category 

<1 1-14 15-44 45-64 65-74 75-84 85+ 

         
FTSE All  -0.589*** -0.001 0.001 0.005 -0.063*** -0.084*** -0.186*** -0.263*** 
Temp -236.29*** 0.96* -0.45 -0.94 -18.40*** -20.35*** -69.17*** -127.43*** 
Temp2 3.99*** -0.04 0.01 -0.05 0.41*** 0.22 1.17*** 2.26*** 
Winter  434.22*** 1.07 -0.06 -3.06 23.13*** 59.78*** 110.46*** 243.05*** 
Summer 29.13 -0.58 -0.93 2.63 -1.38 6.59 13.02 9.02 
Share90+ 448.06 -72.36*** 5.31 -382.50*** -1175.76*** -342.91** -37.16 2392.01*** 
PopDen 74.05*** 0.21 -0.2 2.69*** 15.08*** 17.10*** 16.32*** 23.52*** 
COVID4Week 3517.76*** -0.96 -1.29 20.85** 362.71*** 511.94*** 1188.48*** 1436.90*** 
LockD24Apr 7598.56*** 3.98 -3.88 102.26*** 642.65*** 919.17*** 2254.13*** 3678.12*** 
LockD1May 3966.61*** -1.96 -4.6 47.76* 284.41*** 327.83*** 1005.08*** 2305.11*** 
LockD8May -1307.74*** -21.93*** 4.38 -64.41*** -240.28*** -335.08*** -503.09*** -150.22 
LockD15May 642.28*** 6.12 3.34 -10.68 36.34 -77.22 47.66 633.99*** 
Constant -14970.27*** 38.66 93.75** -400.80** -3174.74*** -4153.16*** -2179.36*** -5385.21*** 

Log-likelihood -26371.29 -1941.43 -1596.08 -3092.11 -4840.36 -5793.51 -9445.02 -15492.73 

Note: *, ** and *** denote significant at the 5%, 1% and 0.1% levels, respectively. 
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We postpone a detailed analysis of the magnitudes of the fitted coefficients on the COVID and 

lockdown identifier variables until the next subsection. Here, the discussion of these coefficients is 

at the more general level of their signs and significance. In this regard we highlight two salient 

features of the results for the COVID and lockdown identifier parameters. First, we report 

widespread evidence of significant COVID and lockdown identifier parameters that are often non-

negligible, which clearly justifies our decision to estimate models that include identifier variables.  

 

Second, although, as we would expect, many of the significant identifier parameters have the same 

sign as the dummy variable parameter they collectively replace in the Base 1 or Base 2 model 

specification, there are a small number of identifier parameters that are odds with the corresponding 

dummy variable parameter (which is a mean estimate). Thus, these provide some interesting 

information about departures from the mean.9 The key examples are as follows: the non-negligible 

negative COVID8May identifier parameters in tables 5 and 6 (A3 and A4) are at odds with the non-

negligible positive COVID4Week (COVID3Week) dummy variable parameters in tables 3 and 4 (A1 

and A2); and the non-negligible negative LockD8May identifier parameters in tables 7 and 8 are at 

odds with the non-negligible positive LockD4Week dummy variable parameters in tables 3 and 4. 

We suggest that we observe negative coefficients on the COVID8May variable as this is the latest 

COVID identifier in our sample, and at some point there will be signs of COVID mortality 

beginning to dissipate (or, in other words, mortality exhibiting signs of a return to its normal 

pattern). This effect also seems to be reinforced by the negative coefficients on the corresponding 

lockdown identifier, which suggest that the lockdown saved lives (in net terms) in the week ending 

8 May 2020.  
 

As a final point in this general discussion of the estimated models, we make a case for using the 

models in the next subsection to obtain a better estimate of excess deaths due to COVID. This case 

involves providing a justification for our models on the grounds they are well-specified. From tables 

4 and A2, we can see that there are a lot of significant coefficients in the models for deaths in the 

elderly age groups, which is what we would expect because there is a higher risk of mortality in the 

elderly. In addition, for the variables that are common across all the reported models and where it 

is clear that the variable should have a positive / negative impact, we consistently report coefficients 

with the expected signs. This is evident, as we consistently report positive coefficients on the 

PopDen and Winter variables, and negative coefficients on the FTSE All and Temp variables.  

 

 
9 The COVID identifiers in tables 5 and 6 (A3 and A4) replace the COVID4Week (COVID3Week) dummy in tables 3 

and 4 (A1 and A2), respectively; and the lockdown identifiers in tables 7 and 8 (A5 and A6) replace the LockD4Week 

(LockD3Week) dummy in tables 3 and 4 (A1 and A2), respectively. 
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5.2 Model Estimates of the Impact on Deaths of COVID and the Lockdown 

The coefficients on the COVID4Week and LockD4Week (COVID3Week and LockD3Week) dummy 

variables in tables 3 and 4 (A1 and A2) are the estimates of the average weekly excess deaths due 

to COVID and the average weekly change in deaths due to the lockdown. The significant such 

estimates are represented by the red lines in figures 6-9. 

 

The coefficients on the COVID4Week (COVID3Week) dummy variable in tables 7 and 8 (A5 and 

A6) are also estimates of the average weekly excess deaths due to COVID. These estimates are good 

approximations of the corresponding estimates in tables 3 and 4 (A1 and A2), respectively, which 

indicates that the like-for-like results from the different model specifications are robust. To 

illustrate, the significant coefficients on the COVID4Week variable in the Total Deaths, Male Deaths 

and Female Deaths models in table 3 are 3,497, 2,073 and 1,428, whereas the corresponding 

significant estimates in table 7 are 3,518, 2,084 and 1,437. For the purposes of comparability, in 

figures 6 and 7 we use the estimates of the average weekly excess deaths due to COVID from tables 

3, 4, A1 and A2, which is for the following reason.  

 

In contrast, the coefficients on the LockD4Week (LockD3Week) dummy variable in tables 5 and 6 

(A3 and A4) are not estimates of the average weekly change in deaths due to the lockdown. This is 

because the fitted models in these tables do not include the COVID identifier for the last week in 

our sample, i.e., COVID15May. As a result, the coefficients on the LockD4Week (LockD3Week) 

dummy variable in tables 5 and 6 (A3 and A4) are picking up the effect of the omitted COVID15May 

identifier. This explains why the fitted coefficients on the LockD4Week (LockD3Week) variable in 

tables 3 and 4 (A1 and A2), which are estimates of the average weekly change in deaths due to the 

lockdown, differ from the fitted coefficients on LockD4Week (LockD3Week) in the corresponding 

models in tables 5 and 6 (A3 and A4). For example, in table 3 the significant coefficient on the 

LockD4Week variable in the Total Deaths model is 2,693, compared to the corresponding significant 

coefficient of 4,624 in table 5.10 As we therefore use the estimates of average weekly deaths due to 

the lockdown from tables 3, 4, A1 and A2 in figures 8 and 9, for the purposes of comparability, we 

 
10 We noted in the previous subsection that the negative fitted coefficients on the COVID8May identifier in tables 5 and 

A3 may be interpreted as a sign of COVID mortality beginning to dissipate. The positive significant coefficients on the 

LockD4Week (LockD3Week) variable in table 5 (A3), however, are substantially larger than the corresponding 

significant positive coefficients in table 3 (A1). This suggests that this dissipation was short-lived or there was some 

volatility at the start of the dissipation. This is because it would appear that the large positive significant coefficients on 

the LockD4Week (LockD3Week) variable in table 5 (A3) are picking up the large positive COVID deaths in the week 

ending 15 May 2020. We explored this by replacing the LockD4Week dummy in the Total Deaths model in table 5 with 

a COVID15May identifier and by replacing the LockD3Week dummy in the Total Deaths model in table A3 with the 

same identifier. In line with are above suggestion we find that in both cases the COVID15May parameter is positive, 

large and significant. These two models with a full complement of COVID identifiers are not reported but are available 

from the corresponding author upon request. 
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also use from the same tables the estimates of average weekly excess deaths due to COVID in 

figures 6 and 7.  

 

The lockdown and COVID identifier parameters in tables 5-8 (A3-A6) can be interpreted as weekly 

deviations around the corresponding mean estimate in tables 3 and 4 (A1 and A2). This is evident 

because from a model with the full complement of identifiers, such as the Total Deaths model in 

table 7, the average of the lockdown identifier parameters (2,725) is a good approximation of the 

coefficient on the lockdown dummy in the Total Deaths model in table 3 (2,693). In figure 6 (7) for 

the models with significant COVID parameters in tables 3 and 4 (A1 and A2), we present the 

average weekly excess COVID deaths that these parameters represent; the weekly deviations from 

the average estimates that the COVID identifier parameters represent; and the widely reported 5 

year average measure of excess deaths. In figure 8 (9) for the models with significant lockdown 

parameters in tables 3 and 4 (A1 and A2), we present the average weekly change in deaths due to 

the lockdown that these parameters represent; and the weekly deviations from the average estimates 

that the lockdown identifier parameters represent. 
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Figure 6: Excess deaths due to COVID from the Base 1 and COVID IdentV1 models 
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Figure 7: Excess deaths due to COVID from the Base 2 and COVID IdentV2 models 
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Figure 8: Change in deaths due to the lockdown from the Base 1 and LockD IdentV1 models 
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Figure 9: Change in deaths due to the lockdown from the Base 2 and LockD IdentV2 models 
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The four key findings from figures 6-9 are important and clear. (i) It is evident from figures 6 and 7 

that our predictions of excess deaths due to COVID in the 15-44 age category, approximate very 

well over our entire sample to the corresponding 5 year average excess deaths. (ii) From the same 

figures, we can see that our predictions of excess deaths due to COVID as a total and for males, 

females and the other four age categories in the figures, approximate the corresponding 5 year 

average excess deaths very well until the beginning of our lockdown periods. (iii) We can see that 

when we continue our predictions in (ii) over our lockdown periods, these predictions are below the 

levels of the corresponding 5 year average excess deaths. This is particularly so for our predictions 

of excess deaths: in totality; for males; females; and the 75-84 and 85+ age categories. For these 

cases, and in line with our hypothesis in the opening section, we suggest that the 5 year average 

excess deaths contains a large number of non-COVID deaths. (iv) From figures 8 and 9 we can see 

that over the course of our lockdown periods, the increase in mortality due to the dominant 

unintended consequences of the lockdown policy tends to decline, which leads to a small amount of 

evidence where the policy has the desired effect and reduces mortality. Over the lockdown period 

as a whole, however, the policy has increased mortality. 

 

To elaborate on (iii) above, in tables 9 and 10 we present from the beginning of our lockdown 

periods, the average weekly difference between the 5 year average excess deaths and our estimates 

of COVID deaths from figures 6 and 7. Among other things, these tables reveal the specific values 

from these figures of the large average gaps between the blue lines and the dashed black lines for: 

the total; males; females; and the 75-84 and 85+ age categories. For example, tables 9 and 10 report 

that, on average per week, our estimates of COVID deaths in totality and for the 85+ category are – 

4670-4727 deaths (54%-63%) and 2335-2361 deaths (57%-64%) lower than the 5 year average 

excess deaths. 

 

Table 9: 5 year mean weekly excess deaths versus mean weekly excess deaths due to COVID 

from the COVID IdentV1 models – week ending 24 April 2020-week ending 8 May 2020 

 

5 year mean 
weekly excess deaths (A) 

Mean weekly excess deaths 
due to COVID from the COVID 

IdentV1 models (B) 

Difference 
(B-A) 

% 
difference 

Total Deaths  7546 2819 -4727 -62.6 
Male 3810 1481 -2329 -61.1 
Female 3739 1355 -2384 -63.8 
15-44 36 39 3 8.3 
45-64 650 197 -453 -69.7 
65-74 931 387 -544 -58.4 
75-84 2253 884 -1369 -60.8 
85+ 3689 1328 -2361 -64.0 
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Table 10: 5 year mean weekly excess deaths versus the mean weekly excess deaths due to COVID 

from the COVID IdentV2 models – week ending 17 April 2020-week ending 8 May 2020 

 

5 year mean 
weekly excess deaths (A) 

Mean weekly excess deaths 
due to COVID from the COVID 

IdentV2 models (B) 

Difference 
(B-A) 

% 
difference 

Total Deaths  8624 3954 -4670 -54.2 
Male 4427 2123 -2304 -52.0 
Female 4199 1849 -2350 -56.0 
15-44 42 45 3 7.1 
45-64 749 303 -446 -59.5 
65-74 1114 577 -537 -48.2 
75-84 2609 1254 -1355 -51.9 
85+ 4124 1789 -2335 -56.6 

 

 

6. Concluding Remarks and Further Work 

This paper makes progress on developing empirical methods that can more robustly quantify 

COVID deaths. Specifically, by controlling for other factors that affect mortality, and by employing 

a novel approach to the statistical modelling by including identifier variables, we are better able to 

identify mortalities due to COVID.  

 

The finding that the Government’s lockdown policy increased mortality in net terms is likely to be 

of particular interest, but is unremarkable. As noted, the lockdown rationale was not to reduce 

mortality in the first place, but rather, to ‘flatten the curve’. When one then considers the possibility 

that the policy might cause mortalities through unintended consequences, such a result is entirely 

plausible. This suggests further avenues of work to better understand the nature of the unintended 

consequences may be important. For example, unintended consequences may relate to a reduction 

in the provision of, and access to, other forms of critical healthcare. They might also include 

individuals choosing not to access healthcare during the lockdown, say because they perceived the 

risk from COVID to be greater than other critical medical conditions. What is directly observable, 

however, is a large reduction in said critical healthcare during the lockdown period. This has 

profound implications for both future policymaking and behavioural science. On the former, it raises 

questions about the merits of blanket policy responses that contrast with material variances in the 

actual risk by age and demographics. On the latter, one must consider whether the design of 

Government communications to encourage citizens to comply with lockdown in the first place 

inadvertently drive other, more harmful, behaviours.   
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Appendix 

 

Table A1: Total, male and female Base 2 models with COVID3Week and LockD3Week dummy 

variables 

Variable 
Total Deaths Male Deaths Female Deaths 

    
FTSE All  -0.503*** -0.224*** -0.274*** 
Temp -243.29*** -94.94*** -148.98*** 
Temp2 3.86*** 1.25*** 2.64*** 
Winter  373.69*** 151.20*** 223.11*** 
Summer 80.50*** 27.94* 51.78*** 
Share90+ 285.61 -749.86*** 1015.70*** 
PopDen 71.57*** 48.00*** 23.57*** 
COVID3Week 1837.32*** 1211.15*** 628.18*** 
LockD3Week 5494.27*** 2512.99*** 2983.13*** 
Constant -14088.47*** -11298.47*** -2791.28*** 
Log-likelihood -26284.24 -13992.07 -15485.22 

       Note: *, ** and *** denote significant at the 5%, 1% and 0.1% levels, respectively. 
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Table A2: Age category Base 2 models with COVID3Week and LockD3Week dummy variables 

Variable 
 

Total Deaths 
Deaths by Age Category 

 <1 1-14 15-44 45-64 65-74 75-84 85+ 

          
FTSE All   -0.503*** -0.001 0.001 0.006 -0.057*** -0.074*** -0.167*** -0.217*** 
Temp  -243.29*** 0.97* -0.45 -0.94 -19.12*** -21.24*** -71.50*** -130.47*** 
Temp2  3.86*** -0.04 0.01 -0.05 0.40*** 0.19 1.13*** 2.22*** 
Winter   373.69*** 1.04 0 -3.56 16.66** 50.74*** 90.37*** 219.26*** 
Summer  80.50*** -0.47 -0.97 3.53 3.91 14.83* 28.71** 29.30** 
Share90+  285.61 -72.52*** 5.17 -383.96*** -1184.12*** -359.60*** -71.79 2296.00*** 
PopDen  71.57*** 0.21 -0.21 2.63*** 14.89*** 16.79*** 15.81*** 22.18*** 
COVID3Week  1837.32*** -1.1 -0.75 14.28* 216.65*** 284.57*** 654.08*** 670.55*** 
LockD3Week  5494.27*** -2.42 -0.77 33.17** 424.74*** 611.84*** 1579.33*** 2842.71*** 
Constant  -14088.47*** 38.100 94.75** -382.21** -3106.21*** -4043.95*** -1991.18*** -4912.94*** 
Log-likelihood  -26284.24 -1947.37 -1598.32 -3112.34 -4886.88 -5848.48 -9515.08 -15172.98 

 Note: *, ** and *** denote significant at the 5%, 1% and 0.1% levels, respectively. 
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Table A3: Total, male and female COVID IdentV2 models with the LockD3Week dummy 

variable and 11 weekly COVID identifier variables 

Variable 
Total Deaths Male Deaths Female Deaths 

    
FTSE All  -0.119*** -0.015 -0.102*** 
Temp -251.19*** -98.91*** -152.79*** 
Temp2 4.09*** 1.37*** 2.76*** 
Winter  389.99*** 160.38*** 230.31*** 
Summer 93.61*** 35.39** 57.27*** 
Share90+ -523.15* -1193.68*** 655.44*** 
PopDen 58.78*** 41.05*** 17.82*** 
COVID28Feb -540.34*** -141.32 -399.02*** 
COVID6Mar -34.84 57.69 -93.76 
COVID13Mar 77.74 168.29* -90.55 
COVID20Mar -312.64** -5.72 -303.58*** 
COVID27Mar 149.42 323.12*** -169.68* 
COVID3Apr 6055.71*** 3672.19*** 2387.27*** 
COVID10Apr 8165.32*** 4823.81*** 3345.65*** 
COVID17Apr 7358.11*** 4047.47*** 3328.77*** 
COVID24Apr 7011.22*** 3831.34*** 3197.86*** 
COVID1May 3368.75*** 1629.62*** 1756.36*** 
COVID8May -1922.87*** -1017.84*** -887.89*** 
LockD3Week 4623.09*** 2271.00*** 2338.50*** 
Constant -9790.93*** -8965.78*** -855.91 

Log-likelihood -21612.63 -11114.63 -13633.09 

   Note: *, ** and *** denote significant at the 5%, 1% and 0.1% levels, respectively. 
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Table A4: Age category COVID IdentV2 models with the LockD3Week dummy variable and 11 weekly COVID identifier variables 

Variable 
Total Deaths 

Deaths by Age Category 
<1 1-14 15-44 45-64 65-74 75-84 85+ 

         
FTSE All  -0.119*** -0.002 0.001 0.007 -0.016* -0.014 -0.040** -0.065*** 
Temp -251.19*** 0.97* -0.47 -1.1 -19.90*** -22.44*** -73.83*** -133.91*** 
Temp2 4.09*** -0.04 0.01 -0.04 0.42*** 0.22 1.20*** 2.33*** 
Winter  389.99*** 1.12 -0.1 -3.65 18.34*** 53.03*** 96.93*** 224.95*** 
Summer 93.61*** -0.66 -0.92 3.01 5.45 16.81* 33.28*** 34.54** 
Share90+ -523.15* -71.24*** 5.76 -386.20*** -1269.81*** -482.54*** -341.44* 1974.84*** 
PopDen 58.78*** 0.23 -0.2 2.57*** 13.57*** 14.80*** 11.61*** 17.06*** 
COVID28Feb -540.34*** -0.86 1.29 25.34 -21.59 -49.11 -210.86*** -281.13*** 
COVID6Mar -34.84 7.15 1.26 19.15 -5.74 -16.54 51.72 -90.11 
COVID13Mar 77.74 4.00 3.31 18.87 80.70* -33.92 28.9 -22.33 
COVID20Mar -312.64** -5.21 -6.61 -16.11 2.47 -8.89 -13.57 -261.24*** 
COVID27Mar 149.42 -0.65 -5.46 -5.98 34.83 12.02 155.08** -39.73 
COVID3Apr 6055.71*** -0.24 3.58 8.27 637.82*** 1007.79*** 2106.00*** 2286.56*** 
COVID10Apr 8165.32*** -13.49* -3.33 53.49** 886.17*** 1217.45*** 2707.51*** 3310.00*** 
COVID17Apr 7358.11*** -5.31 -4.21 62.69* 621.57*** 1145.51*** 2365.05*** 3172.16*** 
COVID24Apr 7011.22*** -2.22 -7.24 113.25*** 611.54*** 1004.37*** 2223.42*** 3068.03*** 
COVID1May 3368.75*** -8.14 -7.95 58.70* 252.46*** 411.64*** 971.24*** 1689.87*** 
COVID8May -1922.87*** -28.09** 1.03 -53.57* -273.94*** -253.83*** -542.30*** -772.74*** 
LockD3Week 4623.09*** 4.57 1.97 12.99 444.99*** 503.63*** 1380.07*** 2266.42*** 
Constant -9790.93*** 31.74 93.23** -363.26** -2662.46*** -3376.78*** -582.99 -3188.42*** 

Log-likelihood -21612.63 -1938.70 -1593.00 -3081.15 -4473.52 -5167.17 -7841.34 -13191.98 

 Note: *, ** and *** denote significant at the 5%, 1% and 0.1% levels, respectively. 
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Table A5: Total, male and female LockD IdentV2 models with the COVID3Week dummy 

variable and 5 weekly lockdown identifier variables 

Variable 
Total Deaths Male Deaths Female Deaths 

    
FTSE All  -0.463*** -0.203*** -0.256*** 
Temp -245.58*** -96.21*** -150.00*** 
Temp2 4.18*** 1.43*** 2.79*** 
Winter  389.46*** 159.74*** 230.30*** 
Summer 47.27** 9.76 36.77** 
Share90+ 207.13 -792.09*** 979.50*** 
PopDen 70.07*** 47.20*** 22.88*** 
COVID3Week 1864.45*** 1225.88*** 640.55*** 
LockD17Apr 9709.01*** 4869.80*** 4844.60*** 
LockD24Apr 9382.67*** 4664.92*** 4722.86*** 
LockD1May 5751.79*** 2469.55*** 3286.51*** 
LockD8May 472.81*** -171.00* 647.90*** 
LockD15May 2415.56*** 857.72*** 1544.66*** 
Constant -13599.07*** -11036.37*** -2564.74*** 

Log-likelihood -24362.74 -12857.25 -14677.09 

                    Note: *, ** and *** denote significant at the 5%, 1% and 0.1% levels, respectively. 
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Table A6: Age category LockD IdentV2 models with the COVID3Week dummy variable and 5 weekly lockdown identifier variables 

Variable 
Total Deaths 

Deaths Age Category 

<1 1-14 15-44 45-64 65-74 75-84 85+ 

         
FTSE All  -0.463*** -0.001 0.001 0.007 -0.053*** -0.067*** -0.154*** -0.202*** 
Temp -245.58*** 0.96* -0.44 -1 -19.39*** -21.64*** -72.22*** -131.27*** 
Temp2 4.18*** -0.04 0.01 -0.04 0.44*** 0.24* 1.23*** 2.34*** 
Winter  389.46*** 1.08 -0.02 -3.24 18.30*** 53.36*** 95.39*** 225.30*** 
Summer 47.27** -0.57 -0.93 2.8 0.25 9.15 18.13 17.06 
Share90+ 207.13 -72.54*** 5.28 -385.33*** -1191.86*** -372.28*** -96.62 2264.91*** 
PopDen 70.07*** 0.2 -0.21 2.60*** 14.74*** 16.54*** 15.34*** 21.59*** 
COVID3Week 1864.45*** -1.06 -0.78 14.74* 219.35*** 288.99*** 662.75*** 681.22*** 
LockD17Apr 9709.01*** 1.08 -1.31 60.09** 804.26*** 1297.56*** 2946.95*** 4594.92*** 
LockD24Apr 9382.67*** 4.14 -4.35 110.69*** 796.41*** 1159.59*** 2812.15*** 4498.95*** 
LockD1May 5751.79*** -1.81 -5.08 56.09** 438.44*** 568.46*** 1563.98*** 3125.69*** 
LockD8May 472.81*** -21.78*** 3.9 -56.15*** -86.63* -95.07* 54.64 668.10*** 
LockD15May 2415.56*** 6.27 2.86 -2.54 189.42*** 161.82** 603.54*** 1448.73*** 
Constant -13599.07*** 38.91 94.12** -373.06** -3057.04*** -3963.00*** -1837.73*** -4721.10*** 

Log-likelihood -24362.74 -1941.41 -1596.15 -3086.21 -4725.66 -5570.74 -8868.47 -14341.78 

Note: *, ** and *** denotesignificant at the 5%, 1% and 0.1% levels, respectively. 

 


